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ON THE LIAPUNOV EXPONENTS OF A LINEAR SYSTEM
WITH MARKOV COEFFICIENTS

S.M. KHRISANOV

Conditions are obtained for the representation of the moments of the solutions of
homogeneous linear systems with Markov coefficients, as a matrix-valued exponent.
Such a representation is the analog of the Floguet— Liapunov representation for the
fundamental matrix of solutions of a homogeneous linear system with periodic coef-
ficients; from it follows the possibility of finding rigorous Liapunov exponents of
the system being examined.

1. Let 1w, be a vector-valued random process defined on the interval of time l#,, ), for
which the vector m (l) of first moments, the matrix M (I},... of second moments, etc. exist for
each ¢ from the given interval. The numbers or symbols determined by the formulas

X%, = lim T hlm@f, X¥n= lim S MOl ...

are called Liapunov exponents in the sense of the moments of corresponding order. For non-
random functions these definitions pass naturally to the known ones /1/. Let §; be a uniform
Markov process on a measurable phase space U = {u} with transition function P (¢, u,T). Let L
and L* be infinitesimal operators corresponding to the semigroups of operators

7o) = §<p @ Pt u dy), TAQD)= §P<t, u,T) Q (du)

which act in Banach spaces of measurable bounded functions {@ (¢)} and of finite generalized
measures {Q (I} = H on U. The density of probabilities distribution p{f, u) of process §;
can be obtained as the sclution of the equation 8p/ét = L*p, p = p {t, u), p (0, u) = p, {u). We assume
that process E; is ergodic and that ¢ (u) is the corresponding unigue stationary probabilities
distribution with convergence rate estimated by

q(u)=gj§p(t. u), |p(t, v) -~ q(u)| << Rexp(— M) (1.1)

with some constants R and@ A >>0. We consider the linear differential equations system

X'=(A4+pBENX (1.2

in which X is an n~dimensional vector, 4 = (a;). B = (b;; (¥)) are nth-order matrices the first
being a constant and the second a measurable function on set U,

Theorem. Let the matrix B (u) be bounded on U and let the eigenvalues {aj,j=1,..., 0} of
matrix A admit of the estimates
Re (@; — a;) < ¢ = const < A (1.3)
for any {,j=1,..., n. Then under the conditions listed above the mean vector m{f) = EX {(f) of
the solution of system {1.2) with sufficiently small p admits of the representation
m (t) = exp (Kt) (C + o)m (0), Det C 5= 0 (1.4)

where K and ¢ are constant nrth-order matrices and ¢ is an infinitesimal matrix as ¢—- oo.

Proof, we write out the equation for the vector m{t, uy = E (X (), §; = u) of firstpartial
moments in the form /2/

2nhY) (A4 pB@)mt, v) -+ LPmt, v) (1.5)

The solutions of this system are connected with the vector of first moments by the formula
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Let H* = {(g, (u))} be a linear space of vectors each of whose c
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H (of generalized densities). The following are examples of linear operators acting in H":
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It is seen that operators 4 and L* commute on H".
By Hg we denote a uni-dimenticnal eigenvalue subspace in space H, specified by the func-

tion g (u): Hy = {yqg (u})}. Obviously, L*H,=0. Let H' be the image {or its closure} of operator

L*in H. We represent space H as the direct sum H = H, 4+ H’. Analogously, we represent
H® = V4 4+ V*, where

| bsgs), L= (L*gy)

I

(1 10(”)[“ (e ] )
Vq=(g(u)}—i iaw q(u)}zwqu»
eag { e

{18 ( ) ]
V’={e(u)}=lﬁ } aWEH, guisV,=
gn(u)

gV, sgweV =dgeV!, gV’

Thus, the solution m (f, u) of system (1.5) is representable as
me(2)
m{t, uy=me{t)g(u)-+m'{t, u), m, u)zq m' ¢, u)
my(gu)sV,, m'(t, eV
Let S, and S,y be two linear operators acting, respectively, from the subspace V' into the
subspace Vj and vice versa: S,V €V, 8,,V, = V'. We consider the vector

l(t,u}=§ : u g lﬂ(t}‘?(u:’evm Uit aysV’

[ N
connected with the vector m (¢, u) by the formulas
mal) | 1E, Sall (0 St w
, = u
eal=l5 #llriul=

where E, and E’ are identity operators in subspaces Vyand V% respectively. The operator B (u)
m{t, u) in a similar block~matrix form is written as

. (@ Do)} melt) |

Buymt v=|o, o Hm(z, w)

here ®;;, ¢ ar ti ide the subspaces V; and V', respectively, @g,

!, from subspace V J.nto subspace Vq, ‘Dop and vice versa, (D 10- Substituting the expansions
presented into Eq.(1.5), for (i, u} we obtain the equation
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where Z,;, 4’ are linear operators acting inside the subspaces V, V' and between them and
having the form

T e At (W Louh &Y Z..= At (W, 8., + ud,)

a0 A 17T 00 ‘ [adidl 13 Al S TR 81 £ T 9 01 ¥ €3/

Zyy = B, (WS + uDyp — Sed — 18;0WP0)

Z = AW+ P(onsox - Sm (A + 1 @yo) Sor)

Ay == E, — oolo,.,, L\l = B — 010001

Woe = A + u®@ — 180 Pyo + Sor (4 + L*) + pSo®
W' = A4 + L* + p@" — pS5;Py

Let us require that Zg = 0, Z,, = 0. To be specific we investigate the first of these two egual-
ities. We have the equation

ASy — S (4 + L*)y = p¥ (Soy) (1.7}
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The solution of the inhomogeneous Eq. (1.7) is representable as

o

So=p§ exp(— At ¥ exp (A1) P, dt (1.8)

o

where P, is the semigroup of bounded operators on V', defined by the equation dp/dt = L*¢’.
But on V' the semigroup P, admits of the estimate §j Py | < R exp (— At). From the condition of
separability of spectrum (1.3) follows the absolute convergence of integral (1.8) for any value
of ¥. Furthermore, the estimate | So | const | p ¥ | is valid. Equation (1.7) can be solved
by the method of successive approximations by the formulas

Se® =0, ASy" — 8o (4 + L*) = p¥ (5o
If | So" | < x = const for all k, then
| S~ Sert | < woa | Sh5* — So?

with some constant x,. This signifies the convergence of the successive approximations for
sufficiently small n. Thus

Su= 21m Solk, Sw = lim Smk
~—>on k—ecn

Moreover, the estimates
ISal<|plen [Swl<lpla

with some constant ¢, are valid. Allowing for
Su(d +L*) + pSu® = A8, + p®ooSor + u®@y — pSePyeSor
and substituting this into the expression for Z,, we have
Zoo = Ayt (A + p®@go — uSuPro) A

Without loss of generality we can take it that all the eigenvalues {a,} of matrix A lie
in the strip 6 << Rea, <6 + ¢,8 > 0. This can be achived by a suitable choice of the appropri-
ate constant @ and by the substitution X = Yexp (af) in Eq.(1.2). On V'the operator exp (4i)
P, admits of the estimate [ exp (42) P,/ || < const exp (— 8f). For sufficiently small p we can find
constants § (u) > 0,c (p) >0 such that the spectrum {a,(n), k=1, ..., n} of matrix Z, lies in the
strip & (p) <CReoy(n) << 8 (p) + ¢ (n), while the solution of the equation ¢l’/dt=2Z'l admits of the
estimate || I' (¢, p) | < const exp (— 8 (p) ). We make the reverse substitution. Since

(' ¢, wydu=0, (q@)du=1 (1.9)
U U

for mg () = m () we have
mo (t)g =exp (KN) 1, (0) g +r(8)q, K =20 r()q) =8l (t v
where r(f) is some n-dimensional vector admitting of the estimate

I 7 (&) || < const exp (— 8 (1) ?)

and which, obviously, always can be represented in the form r(t) = R () I, (0) with some variable
matrix R (f). We have the explicit expressions

1o (0) g (w) = Ayt (mq (0)g — Soy m’ (0, 1))
U0, u) = A7 (— Siomo(0)g + m” (0, u))

whence it follows that the vector m, (0) can be represented as
I, (0) = (Eq -+ uC;y (p)) my (0) = Cmy (0)
with some matrix C, (1) analytically dependent on p. Then
m (1)g = exp (Kt) (C + o) m, (0) g, Det € % 0 (1.10)

Integrating (1.10) with respect to u with due regard to (1.9), we obtain the theorem's asser-
tion.

Note. The matrix K depends analytically on parameter 1 in some neighborhocod of zero.

The system of linear differential equations with constant coefficients, X' = KX with a
matrix K or any other similar to it, is called the limit system for system (1.2) in the sense
of first moments. A convenient representation of matrix K in the form

K =4+ n®y — 1Sy
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follows directly from the theorem's proof. The eigenvalues of matrix K are, in general, com-
plex and their real parts are the Liapunov exponents of the first moments of the solutions cf
system (1.2). 1In particular, if m (0) =0, then the number of rigorous Liapunov exponents does
not exceed the dimension of system (1.2). The following statement can be proved analogously.

Corollary. Let the eigenvalues {a,} of matrix 4 admit of the estimates
Re (a; — &;) < ¢f2, ¢ = const < A

Then the matrix M (t) = EXX* of second moments of the solutions of system (1.2) admists, for
sufficiently small p, of the representation

M (t) = exp (Kot} (C; + o) M (0)
where K, and Cj are constant linear operators in the space of nth-order symmetric square mat-
rices and o is an infinitesimal operator as - oo.

Note. Using the techniques of working with multidimensional matrices ,2/, we can state
and prove corresponding assertions for the higher-order moments.

2, Let us show the importance of the smallness of parameter p to the proof of represent-
ation (l1.4). Consider the equation

X -1 +ué)z=0 (2,1)
with a random coefficient & which is a uniform Markov process with two constants (+1} with the
infinitesimal matrix

Q= I—a an
e —a

The system of moment Egs. (l1.5) with be a system of homogeneous linear differential equations
with constant fourth-order coefficients and have the form

my (t, — 1) — 1—n a 0 my {t, —1)
d {myt, —1) 1 —a O a llm@, —1)
| miEe. ) T « o0 —a 14 my (8, 1)
my (&, 1) 0 « 1 —a m, (¢ 1)

Its characteristic polynomials has four roots
o= —a+ (@t 1k AP = —a—@+1E A" A = Gat+ uyl

The roots 3, and z are always real. Roots 12,3 can be both real as well as complex, and, al-
ways 1, > Rez,; Rez 3 >%. The roots 3, have nonzero imaginary partsAunder the condition p?>
(A2 — 1% Let Cik= (e, (. k=1, ..., 4 be the eigenvectors of the system's matrix, corresponding to
the simple eigenvalues z. The system's general solution is written as

4
(my @ ) = Z Ck exp (z4), j=1ck t
k=1

Consider the second-order vector

mt, — 1) fmt )

my (‘)ﬂ=!l "
| ma (8, — 1)+ ma (8 1)

my (&)

m(t)=“

In space E* we consider the subspace E’ of dimension 2, defined by the conditions
E' = {(zh Tqy T3y z)* iz F oz, = 0, z, + Ty = 0}

If X = E', then X cannot be an eigenvector of the system's matrix. Indeed, otherwise thiswould
be equivalent to the simultaneous fulfillment of the two matrix equalities

[ S== 1Y T E Y zl“
— (2 =0
“1 0 “13“ (a+2)ﬁ-‘h
which is impossible when p=0. This signifies that the vectors C, cannot lie in subspace E’.
We represent the real vector m{f) as

m (f) = a,dy exp (if) + (a4, cos Byt + agdy sin By) exp (Vat) + adq 0xp (ad)
V' >V2> Y B0, vy = Rez;, By = Imgz,

where A,, A4, are certain nonzero vectors, at least one of the vectors 4, or A3 1s nonzero, ayg
are arbitrary constants., Let vector m () be representable in the form

(2.2)

m (t) = exp (Kt) (C + o) m (0) = D, exp (yit}+ Dsexp (vt) + o (exp (v)) (2.3}
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where K is a constant second-order matrix. The real number y, must be an eigenvalue of matrix
K. The second eigenvalue 7y must be real. The contradiction in representations {(2.2) and
{2.3) in the general case indicates the impossibility of representation (2.3).

3. Let us show the importance of condition (1.3) to the representation (1.4). We set
a= 1, We see that the rate coefficient A of the convergence to the stationary distribution
(1.1) equals zero. The estimate on the eigenvalues (1.3) equals zero as well. For every
>0 the roots z,; will have nonzero imaginary parts. Using the argument in Sect.2, we
conclude that representation (2.3) is impossible.

The author thanks R.Z. Khas'minskii for discussions on the paper and for remarks.
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