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ON THE LIAPUNOV EXPONENTS OF A LINEAR SYSTEM 
WITH ~ARKOV COEFFICIENTS* 

S.M. K-IRISANOV 

Conditions are obtained for the representation of the moments of the solutions of 
homogeneous linear systems with Markov coefficients, as a matrix-valued exponent. 
Such a representation is the analog of the Floquet- Liapunov representation for the 
fundamental matrix of solutions of a homogeneous linear system with periodic coef- 
ficients; from it follows the possibility of finding rigorous Liapunov exponents of 
the system being examined. 

1. Let nr be a vector-valued random process defined on the interval of time Ito, m), for 
which the vector m(t)of first moments, the matrix M(1),... of second moments, etc. exist for 
each t from the given interval. The numbers or symbols determined by the formulas 

x"+* = fit fln[m(t)~, X'2'~t=limf111~~(t)Jr... 
t-Sm 

are called Liapunov exponents in the sense of the moments of corresponding order. For non- 
random functions these definitions pass naturally to the known ones /l/. Let El be a uniform 
Markov process on a measurable phase space U = (u} with transition function P(t,u,l’). Let L 
and L* be infinitesimal operators corresponding to the semigroups of operators 

which act in Banach spaces of measurable bounded functions (r+~(u)) and of finite generalized 
measures {Q(r)) = H on U. The density of probabilities distribution p(t,u) of process f;r 
can be obtained as the solution of the equation ap@t = L*p, p = p (t, u), P (0, u) = p. (u). We assume 
that process Et is ergodic and that q(u) is the corresponding unique stationary probabilities 
distribution with convergence rate estimated by 

9(u)== f2p(t, a), IP(t,a)--4(u)JCRexp(--) (1.1) 

with some constants R and h >O. We consider the linear differential equations system 

X = (A + PB (Et)) X il.21 

in which X is an s-dimensional vector,A = (at& 3 = (b,j( )) I are &h-order matrices the first 
being a constant and the second a measurable function on set U. 

Theorem. Let the matrix B(u) be bounded on Uand let the eigenvalues {a,,j = I,..., n) of 
matrix A admit of the estimates 

Re (ai - at) <c = const <k (1.3) 

for any i,j = 1,..., n. Then under the conditions listed above the mean vector m(t)= EX(t) of 
the solution of system (1.2) with sufficiently small p admits of the representation 

m (t) = exp (Kt) (C + o) m (0), Det C # 0 (1.4) 

where K and C are constant nth-order matrices and o is an infinitesimal matrix as t-P 00. 

Proof. We write out the equation for the vector 
moments in the form /2/ 

m(t, u) = E(X (t), Et = u) of firstpartial 

am ft. U) 
7 = (A + pB (4) m (t, u) -i- L*m (t, u) (1.5) 

The solutionsofthis system are connected with the vector of first moments by the formula 
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m(t)= Sm(t, u)du (1.6) 
u 

Let&" = ~(g~(~))} be a linear space of vectors each of whose coordinates is ah elementofspace 
H (of generalized densities). The following are examples of linear operators acting in En: 

It is seen that operators A and L* commute on P. 

By HY we denote a uni-dimentional eigenvalue subspace in space If, specified by the func- 
tion q (26): H, = {yq (a)). Obviously, L*Hp = 
L* in H. 

0. Let H' be the image ior its closure) of operator 
We represent space Has the direct sum H = HO f H’. Analogously, we represent 

H” = Y, + V’, where 

A~EV,, g(u)EV’+AgEV’, L*gEV’ 

Thus, the salution m(t, u) of system (1.5) is representable as 

m (t, s)~rno(~)q~~) + m' (t, a), m(t, a)= 
nto @I 

I I m’ (6 a) 

m. (t)q (u) E V,, m’ (t. 4 E V’ 
Let SO1 and S,, be two linear operatocs acting, respectively, from the subspace V’ into the 
subspace V, and vice versa: SO,V' C V,, S,,VpC V’. W e consider the vector 

connected with the vector m(t,u) by the formulas 

where E. and E' are identity operators in subspaces V,and V, respectively. Theoperator f3 (u) 
m ft, .u) in a similar block-matrix form is written as 

where CD,], @' are linear operators acting inside the subspaces V, and v', respectively, DO,,, 

Cp', from subspace V'into subspace V,, Qtol, and vice versa, @ lO. Substituting the expansions 
presented into Eq.fl.51, for t(t, u) we obtain the equation 

~~~~z~~~)~l=~~~~ ~~lll~:"t9,S 

where z,~, Z' are linear operators acting mside the subspaces V,, V’ and between them and 

having the form 
2 A*-’ 00 = (Woo + t~(f)o$1oh Z,, = A,-’ Woe& + I”@,,) 

2 *o = A,-* (W&o 4 Y%, - S,dl - ItSzo@eof 

2’ = A,-* (W’ 4 p@,,S,, - S,, (-4 -i- ccQ)w) So,) 

A,, = E, - So,&,, Al = E’ - &oso~ 

W,, = A + p@,, - @&&a + So, (A f b*) f @o@’ 

W = A 5 L* + p@ - &,‘& 

Let us require that Z,, = , 0 Z,, -0. TO be specrfic we investigate the first of these tW0 equal- 

ities. We have the equation 

AS,, - Sol (-4 + L*) = yY (Sot) (1.7) 
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The solution of the inhomogeneous Eq.cl.7) is representable as 

Sol=pfexp(-At)Yexp(At)P,‘dt 
0 

(1.8) 

where P,'is the semigroup of bounded operators on V', defined by the equation a(p;lat = L’cp’. 

But on V’ the semigroup Pt’ admits of the estimate II Pt’i <R exp(- ht). From the condition of 
separability of spectrum (1.3) follows the absolute convergence of integral (1.8) foranyvalue 

of 'f'. Furthermore, the estimate 11 SC,, 1 <Con& 11 FY )I is valid. Equation (1.7) can be solved 

by the method of successive approximations by the formulas 

S,,“ = 0, ASoIk - So,k (A + L*) = y’F (S:;‘) 

If 11 S,,kII <<x = con& for all k, then 

II & ---~;_‘u<P~lll~ ;;,;’ - Sk? R 

with some constant x1. This signifies the convergence of the successive approximations for 

sufficiently small v. Thus 

Sol= lim&', SIO= limSIok 
k‘a k-m 

Moreover, the estimates 

A So1 II =G I P I Cl- II Go II < I P I Cl 

with some constant c1 are valid. Allowing for 

S,, (A + L*) -I- P So,@' = AS,, + ~“@ooSo, + p@oI -God’,oSo, 

and substituting this into' the expression for Z,,,we have 

2 oo = A,-' (A + ~‘%,o - ~‘so,‘%) A, 

Without loss of generality we can take it that all the eigenvalues {ak} of matrix A lie 
in the strip 6< Rea,<6 + c,6>O.This can be achived by a suitable choice of the appropri- 
ate constant aand by the substitution X = Yexp(at) in Eq.cl.2). On V'the operator exp(At) 
Pt' admits of the estimate II exp(At) P,‘II < constexp (- b). For sufficiently small p we can find 
constants 6 (p)> O,c(p)>O suchthatthe spectrum 
strip ~(IL)<R~~,(IL)<S(II)+C(~), 

(at(p), k=l, . . . . n} of matrix Z,,lies in the 
whilethe solutionofthe equation #@t=Z'I' admitsofthe 

estimate 11 l'(L P) II< const exp (- S(p)t). We make the reverse substitution. Since 

Sm’(t, u)du=O, Sq(u)du=l 
cl V 

(1.9) 

for m,(t) = m(t) we have 

m. (t)q = exp (Kt) 1, (0) Q + r (t) q, K = ZOO, r (0 q (4 = S,, 1' (t, 4 

where r(t) is some n-dimensional vector admitting of the estimate 

II r (4 II Q con2.t exp (- 6 (14 t) 
and which, obviously, always can be represented in the form r(t)= R(t)&,(O) withsomevariable 
matrix R (t). We have the explicit expressions 

4 (0) 9 (4 = Ao-' (m. (O)q - So, m' (0, 4) 
I' (0, u) = AI-l (- S,,m,(O)q + m’ (0, u)) 

whence it follows that the vector ma(O) can be represented as 

I, (0) = (E, + PC, @I) m. (0) = Cm0 (0) 
with some matrix c,(ci) analytically dependent on I". Then 

m, (t)q = exp (Kt) (C + o) mo (0) q, Det C # 0 (1.10) 

Integrating (1.10) with respect to u with due regard to (1.9), we obtain the theorem's asser- 
tlon. 

IIote. The matrix K depends analytically on parameter p in some neighborhood of zero. 
The system of linear differential equations with constant coefficients, X' = KX with a 

matrix Kor any other similar to it, is called the limit system for system (1.2) in the sense 
of first moments. A convenient representation of matrix Kin the form 

K = A i- @oo - t'S&,, 
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follows directly from the theorem's proof. The eigenvalues of matrix Kare, in general, com- 
plex and their real parts are the Liapunov exponents of the first moments of the solutions cf 
system (1.2). In particular, if m(O)#O, then the number of rigorous Liapunov exponentsdoes 
not exceed the dimension of system (1.2). The following statement can be proved analogously. 

Corollary. Let the eigenvalues {a,} of matrix d admit of the estimates 

Re(ai - ci) <C/2, C = CoIlSt < h 

Then the matrix M(t) = EXX* of second moments of the solutions of system (1.2) admists, for 
sufficiently small c , of the representation 

M 0) = erp (&It) (C, + 0) M (0) 

where K, and Ca are constant linear operators in the space of nth-order symmetric square mat- 
rices and o is an infinitesimal operator as t-t cc. 

Note. Using the techniques of working with multidimensional matrices /2/, we can state 
and prove corresponding assertions for the higher-order moments. 

2. Let US show the importance of the smallness of parameter p to the proof of represent- 
ation (1.4). Consider the equation 

X" - (1 i-i&) I = 0 (2.1) 

with arandomcoefficient 51 which is a uniform Markov process with two constants (21) with the 
infinitesimal matrix 

Q-i-: -:I 

The system of moment Eqs.(l.S) with be a system of homogeneous linear differential equations 
with constant fourth-order coefficients and have the form 

--a l--p 01 0 

Its characteristic polynomials has four roots 

zl,+ = -a + (al + i k A)“: I~,, = -a - (a* + 1 + A)“*, A = (4~' + ~3"~ 

The roots I, and I( are always real. Roots z*,~ can be both real as well as complex, and, al- 
ways z1 > Rez,,,, R~I%,~ > %. The roots z,,~ have nonzero imaginary parts under the condition p*> 
(V - 1)'. Let Ck s (CiK), (i* k = 1, . ., 4)be the eigenvectors of the system's matrix, corresponding to 
the simple eigenvalues Zk. The system's general solution is written as 

k-1 
j = f 1 

Consider the second-order vector 

In space E' we consider the subspace ~of dimension 2, defined by the conditions 

If Xe?E', then X cannot be an eigenvector of the system's matrix. Indeed, otherwisethiswould 

be equivalent to the simultaneous fulfillment of the two matrix equalities 

whi ch is impossible when p=O. This signifies that the vectors Ck cannot lie in subspace E’. 

We represent the real vector m(t) as 

m (0 = a,A,esp (v,f) + @,A, cos &+ %A3 sin BJ) e*P (vi0 + OU& erp (vat) 
Yl>YI>Yl, e,+o. v,= Razj, B*= Ima, 

(2.2) 

where A,,A, are certain nonzero vectors, at least one of the vectors A, or AS is nonzero, 011 
are arbitrary constants. Let vector m(1) be representable in the form 

m (t) = erp(Kt) (C + 0) m (0) = D, exp [w)+ D, exp (Yt) + 0 (-P (Y:)) (2.3) 
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where K is a constant second-order matrix. The real number y, must be an eigenvalueofmatrix 
K. The second eigenvalue y must be real. The contradiction in representations (2.2) and 

(2.3) in the general case indicates the impossibility of representation (2.3). 

3, Let us show the importance of condition (1.3) to the representation (1.4). We set 
a= 1. We see that the rate coefficient h of the convergence to the stationary distribution 
(1.1) equals zero. The estimate on the eigenvalues (1.3) equals zero as well. For every 

00 the roots zl,* will have nonzero imaginary parts. Using the argument in Sect.2, we 
conclude that representation (2.3) is impossible. 

The author thanks R.Z. Khas'minskii for discussions on the paper and for remarks. 
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